MATH 2050A: Mathematical Analysis I (2016 1st term)

1  Sequentially Compact Sets and Compact Sets in R

Definition 1.1 Let A be a subset of R. A point z € R is called a limit point of A if for any
d > 0, there is an element a € A such that 0 < |z —a| < §.
Put D(A) the set of all limit points of A.

Example 1.2 (i) D([a,b]) = D((a,b)) = [a,b)].

(ii) D([0,1]uU{2}) =0,1].

(iii) D(N) = 0.

(iv) D({a}) =0 for any a € R.
Definition 1.3 A subset A of R is said to be closed in R if D(A) C A.

Example 1.4 (i) {a};[a,b];]0,1]U{2}; N and R all are closed subsets of R.

(ii) (a,b) and Q are not closed.
The following Lemma can be directly shown by the definition, so, the proof is omitted here.

Lemma 1.5 Let A be a subset of R. The following statements are equivalent.
(i) A is closed.
(it) For each element x € R\ A, there is 05 > 0 such that (x — 6z, x + d;) N A = 0.

(iii) If (xy,) is a sequence in A and lim x,, exists, then limz, € A.

Definition 1.6 Let A be a subset of R.

(i) A is said to be sequentially compact if every sequence (x,) in A has a convergent subse-
quence (zp, ) with limg z,, € A.

(ii) A is said to be compact if for any open intervals cover {J,}aeca of A, that is, each J, is
an open interval and

Ac | Ja,
aEA

we can find finitely many J,,, .., Ja, such that A C J,, U---U Jy, .



Example 1.7 (i) Every closed and bounded interval is sequentially compact.
In fact, if (z,,) is any sequence in a closed and bounded interval [a, b], then (z,,) is bounded.
Then by Bolzano-Weierstrass Theorem (see [1, Theorem 3.4.8]), (z,,) has a convergent
subsequence (z,, ). Notice that since a < z,, < b for all k, then a < limy z,, < b, and
thus limy, x,,, € [a,b]. Therefore A is sequentially compact.

(ii) (0,1]is not sequentially compact. In fact, if we consider z,, = 1/n, then (x,) is a sequence
in (0,1] but it has no convergent subsequence with the limit sitting in (0, 1].

(iii) (0, 1] is not compact. In fact, if we put J,, = (1/n,2) for n = 2,3..., then (0,1] C ;2 Jn,
but we cannot find finitely many J,,,, ..., Jn, such that (0,1] C J,, U---U Jy,,. So (0,1]
is not compact.

Theorem 1.8 (Heine-Borel Theorem) Every closed and bounded interval [a,b] is a compact
set.

Proof: Suppose that [a,b] is not compact. Then there is an open intervals cover {J,}aen of
[a, b] but it it has no finite sub-cover. Let I; := [a1,b1] = [a, b] and m; the mid-point of [aq, by].
Then by the assumption, [a1,m1] or [m1, b1] cannot be covered by finitely many J,’s. We may
assume that [a;,m1] cannot be covered by finitely many J,’s. Put Iz := [ag, bo] = [a1,m1]. To
repeat the same steps, we can obtain a sequence of closed and bounded intervals I,, = [ay, by]
with the following properties:

(a) h2 232 - ;
(b) limy, (b, — an) = 0;
(¢) each I,, cannot be covered by finitely many J,’s.

Then by the Nested Intervals Theorem (see [1, Theorem 2.5.2, Theorem 2.5.3]), there is
an element & € (), I, such that lim, a, = lim, b, = £. In particular, we have a = a1 < ¢ <
by = b. So, there is ap € A such that & € J,,. Since J,, is open, there is € > 0 such that
(& —e,6+¢) C Jay- On the other hand, there is N € N such that ay and by in (§ —¢,& +¢)
because lim, a,, = lim, b, = £ Thus we have Iy = [an,bn] C (£ —&,& +¢) C Jo,. It
contradicts to the Property (c¢) above. The proof is finished. O

Theorem 1.9 Let A be a subset of R. The following statements are equivalent.
(i) A is compact.
(ii) A is sequentially compact.

(iii) A is closed and bounded.

Proof: The result is shown by the following path (i) = (ii) = (iii) = (7).

For (i) = (ii), suppose that A is compact but it is not sequentially compact. Then there
is a sequence (xy) in A such that (x,) has no subsequent which has the limit in A. Put
X =A{z, :n=1,2,..}. Then X is infinite. Also, for each element a € A, there is 64 > 0
such that J, := (a — dq,a + d4) N X s finite. Indeed, if there is an element a € A such that
(a —d0,a + ) N A is infinite for all § > 0, then (z,) has a convergent subsequence with the



limit a. On the other hand, we have A C J,c 4 Jo. Then by the compactness of A, we can find
finitely many aq, ...,an such that A C Jgo, U---UJy,. So we have X C J,, U---UlJg,. Then by
the choice of J,’s, X must be finite. This leads to a contradiction. Therefore, A is sequentially
compact.

For (ii) = (iii), assume A is sequentially compact. We first claim that A must be bounded.
Otherwise, if A is unbounded and if we fix x1 € A, then there is an element xo € A such that
|x1 — 22| > 1. By the unboundedness of A again, we can find xs € A such that |x3 —xx| > 1 for
k =1,2. To repeat the same step, we can obtain a sequence (x,) in A such that |x, —x,| > 1
form # n. Thus (x,) has no convergent subsequence and hence A is not sequentially compact.
So A must be bounded if A is sequentially compact.

Secondly, we will see that A must be closed. Let (x,,) be a sequence in A such that a := lim x,,
in R. We want to show that a € A by Lemma 1.5. In fact, since A is sequentially compact,
then (xy) has a convergent subsequence (xy, ) with limy z,, € A. This gives a = lim, x, =
limy x,, € A. So, A is closed. Part (ii) follows.

It remains to show (iii) = (7). Suppose that A is closed and bounded. Then we can find a closed
and bounded interval [a,b] such that A C [a,b]. Now let {Ja}acn be an open intervals cover of
A. Notice that for each element x € [a,b]\ A, there is 05 > 0 such that (x —dz,x+0;)NA =10
since A is closed. If we put I, = (x — §z,x + 05) for x € [a,b] \ A, then we have

o C | JJou |J L

aEN z€[a,b]\A

Using the Heine-Borel Theorem 1.8, we can find finitely many Jo’s and I,,’s, say Jo,, ..., Jay
and Iy, , ..., Iz, , such that A C [a,b] C Jo, U+ UJyy ULy U--- U, . Note that [, NA=10
for each x € [a,b] \ A by the choice of I,. Therefore, we have A C Jo, U---U Jy, and hence
A is compact.

The proof is finished. O

2 Complete subsets in R

Definition 2.1 A sequence (z,) in R is called a Cauchy sequence if for every £ > 0, there is
a positive integer N such that |z, — z,| < € for all m,n > N.

Remark 2.2 A sequence (z,,) is not a Cauchy sequence if and only if there is € > 0 such that
for any positive integer N, we can find some positive integers m,n with m,n > N satisfying
|Tm — Tp| > €.

Example 2.3 For each positive integer n, if we put z,, = Y ,_, 1/k, then () is not a Cauchy
sequence. Indeed, notice that for any positive integer n, we have

1 N +1>n_1
Cn+1 on ~2n 2

‘xZn - xn|

So, if we take € = 1/2, then for any positive integer N, we have |zoy — xn| > €. Thus (z,) is
not a Cauchy sequence.

Proposition 2.4 Fvery convergent sequence is a Cauchy sequence.



Proof: Let (x,) be a convergent sequence and L = limxz,. Then for any ¢ > 0, there is
N € N such that |L — z,| < ¢ for all n > N. So, for any m,n > N, we have |z, — x| <
|xy, — L| 4+ |L — x| < €. Hence (z,) is Cauchy. O

Definition 2.5 A subset A of R is said to be complete if for any Cauchy sequence (z,) in A
is convergent in A, that is, x,, € A for all n and lim z,, belongs to A.

The following result is one of important theorems in history.

Theorem 2.6 R is complete, that is, every Cauchy sequence in R is convergent. Consequently,
a sequence is convergent in R if and only if it is a Cauchy sequence.

Proof: Let (z,,) be a Cauchy sequence in R. We first claim that (z,,) must be bounded. Indeed,
by the definition of a Cauchy sequence, if we consider € = 1, then there is a positive integer N
such that |z, —xy| < 1 for all m > N and thus we have |z,,| < 1+ |xn]| for all m > N. So,
if we let M = max(|x1|, ..., |xn_1],|zNn]| + 1), then we have |z,| < M for all n. Hence (x,) is
bounded.

So, we can now apply the Bolzano-Weierstrass Theorem, (x,) has a convergent subsequence
(xn,,). Let L :=limy z,, . We are going to show that L = lim,, zy,.

Let € > 0. Since (z,) is Cauchy, there is N € N such that |z,, — z,| < € for all m,n > N.
On the other hand, since limy x,, = L, we can find a positive integer K so that |L — z,, | < ¢
for all K > K. Now if we choose r > K such that n, > N, then for any n > N, we have
|xy, — L| < |xy — @p, | + |Tn, — L] < 2e. Thus (z,) is convergent with lim,, x,, = L.

The finial assertion follows from Proposition 2.4 at once.

The proof is finished. O

Corollary 2.7 Let A be a subset of R. Then A is complete if and only if A is closed in R

Proof: Suppose that A is complete. Let (x,) be a convergent sequence in A. Then it must be
a Cauchy sequence by Proposition 2.4. By the definition of completeness, lim z,, € A and thus
A is closed.

Conversely, assume that A is closed in R. Let (z,,) be a Cauchy sequence in A. Theorem 2.6
tells us that lim,, z,, exists. Since A is closed, lim,, z,, € A. The proof is finished. O

Corollary 2.8 Every compact subset of R is complete.

Proof: Tt follows from Theorem 1.9 and Corollary 2.7 at once. O

3 Continuous functions defined on compact sets

Throughout this section, let A be a non-empty subset of R and f: A — R a function defined
on A.

Proposition 3.1 Suppose that f is continuous on A. If A is compact, then there are points c
and b in A such that

f(c) = max{f(x):x € A} and f(b) = min{f(z): z € A}.



Proof: By considering the function —f on A, it needs to show that f(c) = max{f(z) :z € A}
for some c € A.

Method I:

We first claim that f is bounded on A, that is, there is M > 0 such that |f(z)] < M for
all z € A. Suppose not. Then for each n € N, we can find a,, € A such that |f(ay)| > n.
Recall that A is compact if and only if it is closed and bounded (see Theorem 1.9). So, (ay,)
is a bounded sequence in A. Then by the Bolzano-Weierstrass Theorem, there is a convergent
subsequence (ay, ) of (a,). Put a = limg ay,. Since A is closed and f is continuous, a € A,
from this, it follows that f(a) = limy f(ap,). It is absurd because ny < |f(an,)| — |f(a)| for
all k and ny — oco. So f must be bounded. So L := sup{f(x) : = € A} must exist by the
Axiom of Completeness.

It remains to show that there is a point ¢ € A such that f(c) = L. In fact, by the definition
of supremum, there is a sequence (z,) in A such that lim,, f(z,) = L. Then by the Bolzano-
Weierstrass Theorem again, there is a convergent subsequence (zy, ) of (x,) with limy z,, € A.
If we put ¢ := limy, x,,, € A, then f(c) = limy, f(xy, ) = L as desired. The proof is finished.
Method II:

We first claim that f is bounded above. Notice that for each = € A, there is d, > 0 such that
fly) < f(x) + 1 whenever y € A with |z — y| < d, since f is continuous on A. Now if we put
Jy = (x—0;, 5+6;) for each x € A, then A C |, 4 Jo- So, by the compactness of A, we can find
finitely many 1, ...,zn in A such that A C J,, U---UJ,, and it follows that for each x € A, we
have f(x) < 1+ f(xy) for some k = 1,..., N. Now if we put M := max{1+ f(z1),..., 1+ f(zn)},
then f is bounded above by M on A.

Put L := sup{f(z) : « € A}. It remains to show that there is an element ¢ € A such that
f(e¢) = L. Suppose not. Notice that since f(z) < L for all x € A, we have f(x) < L for all
x € A under this assumption. Therefore, by the continuity of f, for each x € A, there are
ez > 0 and 7, > 0 such that f(y) < f(z) + e, < L whenever y € A with |y — x| < 0. Put
I := (x =0z, x+n;). Then A C (J,c4 Iz By the compactness of A again, A can be covered by
finitely many I, ..., Iy, . If welet L' := max{f(z1)+eu, ..., f(xN)+Exy }, then f(z) < L' < L
for all x € A. It contradicts to L being the least upper bound for the set {f(z): x € A}. The
proof is complete. O

Definition 3.2 We say that a function f is upper semi-continuous (resp. lower semi-continuous)
on A if for each element z € A and for any ¢ > 0, there is § > 0 such that f(z) < f(z) + ¢
(resp. f(2) —e < f(x)) whenever z € A with |z — 2| < 4.

Remark 3.3 (i) It is clear that a function is continuous if and only if it is upper semi-
continuous and lower semi-continuous. However, an upper semi-continuous function need
not be continuous. For example, define a function f: R — R by

fa) = {1 if ze0,1]

0 otherwise.

(ii) From the Method II above, we see that if f is upper semi-continuous (resp. lower
semi-continuous) on a compact set A, then the function f attains the supremum (resp.
infimum) on A.



Proposition 3.4 If f: A — R is continuous and A is compact, then the image f(A) is com-
pact. Furthermore, if f is injective, then the inverse map f~1: f(A) — A is also continuous.

Proof: Recall the fact that a subset of R is closed if and only if it is closed and bounded (see
Theorem 1.9). So, it needs to show that f(A) is a closed and bounded set. We first notice
that f(A) is bounded by Proposition 3.1. It remains to show that f(A) is a closed subset of R.
Let y € f(A). Then there is a sequence (z,,) in A such that lim f(x,) = y. Then by Theorem
1.9 again, there is a convergent subsequence (z,) of (z,) such that limy z,, € A. Since f is
continuous, it follows that y = limy, f(zy, ) = f(limg z,, ) € f(A) and thus f(A) is closed.
Concerning the last assertion, let B = f(A) and ¢ = f~' : B — A. Suppose that g is not
continuous at some b € B. Put a = g(b) € A. Then there are n > 0 and a sequence (y,)
in B such that limy, = b but |g(y,) — g(b)| > n for all n. Let z, := g(y,) € A. So, by the
compactness of A, there is a convergent subsequence (x, ) of (z,) such that limy z,, € A. Let
a' = limg x,,. Then we have f(a’) = limy, f(z,,) = limy yn, = b. On the other hand, since
lg(yn) — g(b)| > n for all n, we see that

|Zn, — al = 19(Yn,,) — g(b)] =1 >0

for all k£ and hence |a’ — a| > 0. This implies that a # o’ but f(a’) = b = f(a). It contradicts
to f being injective.
The proof is finished. O

Remark 3.5 The assumption of the compactness in the last assertion of Proposition 3.4 is
essential. For example, consider A = [0,1) U [2, 3] and define f : A — R by

{x if z€10,1)

W= 1 repa

Then f(A) = [0,2] and f is a continuous bijection from A onto [0,2] but f=!:[0,2] — A is
not continuous at y = 1.

Example 3.6 By Proposition 3.4, it is impossible to find a continuous surjection from [0, 1]
onto (0, 1) since [0, 1] is compact but (0, 1) is not. Thus [0, 1] is not homeomorphic to (0,1).

Definition 3.7 A function f: A — R is said to be uniformly continuous on A if for any € > 0,
there is ¢ > 0 such that |f(x) — f(y)| < € whenever z,y € A with |z —y| <.

Remark 3.8 It is clear that if f is uniformly continuous on A, then it must be continuous on
A. However, the converse does not hold. For example, consider the function f : (0,1] — R
defined by f(z) := 1/z. Then f is continuous on (0, 1] but it is not uniformly continuous on
(0,1]. Notice that f is not uniformly continuous on A means that

there is € > 0 such that for any 6 > 0, there are x,y € A with |x —y| < § but |f(x) — f(y)| > e.
Notice that 1/x — oo as x — 0+. So if we let e = 1, then for any ¢ > 0, we choose n € N

such that 1/n < 0 and thus we have |1/2n — 1/n| = 1/2n < 6 but |f(1/n) — f(1/2n)| =n >
1 = . Therefore, f is not uniformly continuous on (0, 1].



Example 3.9 Let 0 < a < 1. Define f(x) = 1/z for € [a, 1]. Then f is uniformly continuous
on [a,1]. In fact for z,y € [a, 1], we have

SV S VOt N ]
£a) = )l = |7 - o) = E M <

So for any ¢ > 0, we can take 0 < § < a®c. Thus if z,y € [a,1] with |z — y| < 6, then we have
|f(z) — f(y)| < e and hence f is uniformly continuous on [a, 1].

Proposition 3.10 If f is continuous on a compact set A, then f is uniformly continuous on

A.

Proof: Compactness argument:
Let ¢ > 0. Since f is continuous on A, then for each x € A, there is J, > 0, such that
|f(y)—f(z)] < e whenever y € A with |y—x| < d,. Now for each z € A, set J, = (m—%‘,x+%).

Then A C (J,cq Jo- By the compactness of A, there are finitely many z1,...,2x € A such
1)

that A C J,, U---U Jz,. Now take 0 < 6 < min(%,..., 5%). Now for z,y € A with
|z —y| < 9, then z € I, for some k = 1,.., N, from this it follows that |z — x| < % and
ly—z| < |y—zx|+|zx—xk| < 517’“—#6%’“ = 0g,. So for the choice of d,, , we have | f(y)— f(zg)| < €
and |f(z) — f(zx)| < e. Thus we have shown that |f(z) — f(y)| < 2¢ whenever x,y € A with
|z — y| < . The proof is finished.

Sequentially compactness argument:

Suppose that f is not uniformly continuous on A. Then there is € > 0 such that for each
n=1,2,.., we can find =, and y, in A with |z, — y,| < 1/n but |f(x,) — f(yn)| > €. Notice
that by the sequentially compactness of A, (z,) has a convergent subsequence (x,,) with
a := limy x,, € A. Now applying sequentially compactness of A for the sequence (yy, ), then
(yn,) contains a convergent subsequence (ynkj) such that b := lim; Ynu, € A. On the other

hand, we also have lim; Ty, = Q. Since |5Unk]- ~ Uny, | < 1/ny, for all j, we see that a = b. This
implies that lim; f(:cnkj) = f(a) = f(b) = lim; f(ynkj ). This leads to a contradiction since we
always have |f(33nk],) — f(ynkj)| > e > 0 for all j by the choice of x,, and y,, above. The proof
is finished. O

Proposition 3.11 Let f be a continuous function defined on a bounded subset A of R. Then
the following statements are equivalent.

(i): f is uniformly continuous on A.

(ii): There is a unique continuous function F defined on the closure A such that F(z) = f(x)
for all x € A.

Proof: The Part (ii) = (i) follows from Theorem 1.9 and Proposition 3.10 at once.

The proof of Part (i) = (i) is divided by the following assertions. Assume that f is uniformly
continuous on A.

Claim 1. If (z,) is a sequence in A and lim x,, exists, then lim f(z,,) exists.

It needs to show that (f(x,)) is a Cauchy sequence. Indeed, let ¢ > 0. Then by the uniform
continuity of f on A, thereis d > 0 such that | f(z)—f(y)| < € whenever x,y € A with |z—y| < 4.
Notice that (x,) is a Cauchy sequence since it is convergent. Thus, there is a positive integer



N such that |z, — 2| < d for all m,n > N. This implies that |f(z,,) — f(z,)| < e for all
m,n > N and hence, Claim 1 follows.

Claim 2. If (z,) and (y,) both are convergent sequences in A and limz, = limy,, then
lim f () = lim f(yn).

By Claim 1, L := lim f(x,) and L' = lim f(y,) both exist. For any € > 0, let § > 0 be found
as in Claim 1. Since limz,, = limy,, there is N € N such that |z, —y,| < ¢ for all n > N
and hence, we have |f(z,) — f(yn)| < € for all n > N. Taking n — oo, we see that |[L — L'| <e
for alle > 0. So L = L'. Claim 2 follows.

Recall that an element x € A if and only if there is a sequence (x,,) in A converging to x.

Now for each x € A, we define
F(zx) :=lim f(x,)

if (x,,) is a sequence in A with limz,, = z. It follows from Claim 1 and Claim 2 that F'is a
well defined function defined on A and F(z) = f(z) for all x € A.

So, it remains to show that F is continuous. Then F is a continuous extension of f to A as
deired.

Now suppose that F is not continuous at some point z € A. Then there is € > 0 such that for
any § > 0, there is z € A satisfying |z — 2| < § but |F(z) — F(z)| > . Notice that for any
§ > 0 and if [z — z| < § for some z € A, then we can choose a sequence (z;) in A such that
limz; = x. Therefore, we have |z; — z| < § and |f(x;) — F(2)| > ¢/2 for any ¢ large enough.
Therefore, for any 6 > 0, we can find an element z € A with |z —z| < 0 but |f(zx) —F(z)| > ¢/2.
Now consider 6 = 1/n for n = 1,2.... This yields a sequence (x,) in A which converges to z
but |f(zn) — F(2)| > ¢/2 for all n. However, we have lim f(z,,) = F'(z) by the definition of F'
which leads to a contradiction. Thus F' is continuous on A.

Finally the uniqueness of such continuous extension is clear.

The proof is finished. O

Example 3.12 By using Proposition 3.11, the function f(x) := siné defined on (0, 1] cannot
be continuously extended to the set [0, 1].

4 Lipschitz functions

Definition 4.1 Let A be a non-empty subset of R. A function f : A — R is called a Lipschitz
if there is a constant C' > 0 such that |f(x) — f(y)| < C|z — y| for all z,y € A. In this case.
Furthermore, if we can find such 0 < C' < 1, then we call f a contraction.

It is clear that we have the following property.
Proposition 4.2 FEvery Lipschitz function is uniformly continuous on its domain.

Example 4.3 (i) : The sine function f(x) = sinz is a Lipschitz function on R since we
always have |sinz —siny| < |x — y| for all z,y € R.

(ii) : Define a function f on [0,1] by f(z) = xsin(1/z) for € (0,1] and f(0) = 0. Then f is
continuous on [0, 1] and thus f is uniformly continuous on [0, 1]. But notice that f is not



a Lipschitz function. In fact, for any C' > 0, if we consider z,, = m and y, =

then |f(xn) — f(yn)| > Clzyn — yn| if and only if

2nm?

=4n > C.

2 (2nm + 5)(2nm)
T 2nm + 5

Therefore, for any C' > 0, there are z,y € [0, 1] such that |f(z) — f(y)| > C|z — y| and
hence f is not a Lipschitz function on [0, 1].

Proposition 4.4 Let A be a non-empty closed subset of R. If f : A — A is a contraction,
then there is a fized point of f, that is, there is a point a € A such that f(a) = a.

Proof: Since f is a contraction on A, there is 0 < C' < 1 such that |f(z) — f(y)| < Clz — y|
for all z,y € A. Fix x; € A. Since f(A) C A, we can inductively define a sequence (z,) in A
by zp4+1 = f(zy) for n = 1,2... Notice that we have

|[Zpt1 — | = [f(@n) — f(zn-1)] < Clon — 2p-1|

for all n = 2,3... This gives
|Znt1 — Tp| < O™ Hag — 2y

forn =2,3,.... So, for any n,p =1, 2.., we see that

n+p—1 n+p—1
‘xn—i-p — x| < Z |Tip1 — 2] < |w2 — 241 Z c
i=n 1=n

Since 0 < C' < 1, for any € > 0, there is N such that Z?:t‘f_l C~! < eforalln > N
and p = 1,2,... Therefore, (z,) is a Cauchy sequence and thus the limit a := lim,, z,, exists.
Since A is closed, we have a € A and hence f is continuous at a. On the other hand, since
ZTnt1 = f(xy). Therefore, we have a = f(a) by taking n — oo. The proof is finished. a

Remark 4.5 The Proposition 4.4 does not hold if f is not a contraction. For example, if we
consider f(x) = x —1 for z € R, then it is clear that |f(x) — f(y)| = |z —y| and f has no fixed
point in R.
5 Continuous functions defined on intervals
Recall that a non-empty subset I of R is called an interval if it has one of the following forms.

(i) R.

(ii) (—o0,al or [a,0) or (—o0,a) or (a,00) for some a € R.

(iii) (a,b) or (a,b] or [a,b) or [a,b] for some a,b € R with a < b.

Lemma 5.1 Let I be a non-empty subset of R. Suppose that there are different elements in I.
Then I is an interval if and only if for any a,b € I with a < b, we have [a,b] C I.



Proposition 5.2 (Intermediate Value Theorem): Let I be an interval and let f : I — R
be a continuous function. Suppose that there are a and b in I with f(a) < z < f(b). Then
there is ¢ between a and b such that f(c) = z.

Proof: Notice that if we consider the function x € I — f(x) — z, then we may assume that
z = 0. Also, we may assume that a < b. Put 1 = a and y; = b. Now if f(aTer) = 0, then the
result is obtained. If f(“TH’) > 0, then we set 9 = a and yo = aT‘H’. Similarly, if f(aTer) <0,
then we set xo = “T'H’ and y2 = b. To repeat the same procedure, if there are z and yy such
that f (W) = 0, then the result is shown. Otherwise, we can find a decreasing sequence of
closed and bounded intervals [a, b] = [x1,y1] D [x2,y2] 2 - -+ with lim(y, —z,) = 0 and f(z,) <
0 < f(yn) for all n. Then by the Nested Intervals Theorem, we have (), [zn, yn] = {c} for some

¢ € [x1,11] = [a,b] C I because [ is an interval. Moreover, we have lim, x,, = lim, y, = c.
Then by the continuity of f, we see that f(c) = lim f(z,,) = lim f(y,). Since f(z,) <0 < f(yn)
for all n, we have f(c) = 0. The proof is finished. O

Remark 5.3 The assumption of the intervals in the Intermediate Value Theorem is essential.
For example, consider I = [0,1) U (2, 3] and define f: I — R by

K if x€l0,1)
f@%_{x—l if ze(2,3].

Then f(0) <1< f(3) but 1 ¢ f(I).

Corollary 5.4 Let f;[a,b] — R. Suppose that M :=sup{f(z) : x € [a,b]} and m = inf{f(z) :
x € [a,b]}. Then f([a,b]) = [m, M].

Proof: Notice that if m = M, then f is a constant function and hence, the result is clearly
true.

Now suppose that m < M. It is clear that f([a,b]) C [m, M] because m < f(z) < M for all
x € [a,b]. For the converse inclusion, notice that since [a,b] is compact, there are z; and z2
in [a,b] such that f(x;) = m and f(x2) = M. We may assume that 1 < z3. To apply the
Intermediate Value Theorem for the restriction of f on [z1, 23], we have [m, M| C f([z1,z2]) C
f([a,b]). The proof is finished. O

Corollary 5.5 Let I be an interval and let f : I — R be a continuous non-constant function.
Then f(I) is an interval.

Proof: Notice that by Lemma 5.1, it needs to show that for any ¢,d € f(I) with ¢ < d implies
that [c,d] C f(I). Suppose that a,b € I with a < b satisfy f(a) = ¢ and f(b) = d. Notice that
[a,b] C I because I is an interval. If we put M = sup,c(q ) f(2) and m = inf ey f(2), then
by Corollary 5.4, we have

[Cv d] C [m’ M] = f([a’ b]) - f(I)

The proof is finished. O

Example 5.6 It is impossible to find a continuous surjection from (a,b) onto (¢,d) U (e, f)
where d < e.
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