
MATH 2050A: Mathematical Analysis I (2016 1st term)

1 Sequentially Compact Sets and Compact Sets in R

Definition 1.1 Let A be a subset of R. A point z ∈ R is called a limit point of A if for any
δ > 0, there is an element a ∈ A such that 0 < |z − a| < δ.
Put D(A) the set of all limit points of A.

Example 1.2 (i) D([a, b]) = D((a, b)) = [a, b].

(ii) D([0, 1] ∪ {2}) = [0, 1].

(iii) D(N) = ∅.

(iv) D({a}) = ∅ for any a ∈ R.

Definition 1.3 A subset A of R is said to be closed in R if D(A) ⊆ A.

Example 1.4 (i) {a}; [a, b]; [0, 1] ∪ {2}; N and R all are closed subsets of R.

(ii) (a, b) and Q are not closed.

The following Lemma can be directly shown by the definition, so, the proof is omitted here.

Lemma 1.5 Let A be a subset of R. The following statements are equivalent.

(i) A is closed.

(ii) For each element x ∈ R \A, there is δx > 0 such that (x− δx, x+ δx) ∩A = ∅.

(iii) If (xn) is a sequence in A and limxn exists, then limxn ∈ A.

Definition 1.6 Let A be a subset of R.

(i) A is said to be sequentially compact if every sequence (xn) in A has a convergent subse-
quence (xnk

) with limk xnk
∈ A.

(ii) A is said to be compact if for any open intervals cover {Jα}α∈Λ of A, that is, each Jα is
an open interval and

A ⊆
⋃
α∈Λ

Jα,

we can find finitely many Jα1 , .., JαN such that A ⊆ Jα1 ∪ · · · ∪ JαN .
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Example 1.7 (i) Every closed and bounded interval is sequentially compact.
In fact, if (xn) is any sequence in a closed and bounded interval [a, b], then (xn) is bounded.
Then by Bolzano-Weierstrass Theorem (see [1, Theorem 3.4.8]), (xn) has a convergent
subsequence (xnk

). Notice that since a ≤ xnk
≤ b for all k, then a ≤ limk xnk

≤ b, and
thus limk xnk

∈ [a, b]. Therefore A is sequentially compact.

(ii) (0, 1] is not sequentially compact. In fact, if we consider xn = 1/n, then (xn) is a sequence
in (0, 1] but it has no convergent subsequence with the limit sitting in (0, 1].

(iii) (0, 1] is not compact. In fact, if we put Jn = (1/n, 2) for n = 2, 3..., then (0, 1] ⊆
⋃∞
n=2 Jn,

but we cannot find finitely many Jn1 , ..., JnK such that (0, 1] ⊆ Jn1 ∪ · · · ∪ JnK . So (0, 1]
is not compact.

Theorem 1.8 (Heine-Borel Theorem) Every closed and bounded interval [a, b] is a compact
set.

Proof: Suppose that [a, b] is not compact. Then there is an open intervals cover {Jα}α∈Λ of
[a, b] but it it has no finite sub-cover. Let I1 := [a1, b1] = [a, b] and m1 the mid-point of [a1, b1].
Then by the assumption, [a1,m1] or [m1, b1] cannot be covered by finitely many Jα’s. We may
assume that [a1,m1] cannot be covered by finitely many Jα’s. Put I2 := [a2, b2] = [a1,m1]. To
repeat the same steps, we can obtain a sequence of closed and bounded intervals In = [an, bn]
with the following properties:

(a) I1 ⊇ I2 ⊇ I3 ⊇ · · · · · · ;

(b) limn(bn − an) = 0;

(c) each In cannot be covered by finitely many Jα’s.

Then by the Nested Intervals Theorem (see [1, Theorem 2.5.2, Theorem 2.5.3]), there is
an element ξ ∈

⋂
n In such that limn an = limn bn = ξ. In particular, we have a = a1 ≤ ξ ≤

b1 = b. So, there is α0 ∈ Λ such that ξ ∈ Jα0 . Since Jα0 is open, there is ε > 0 such that
(ξ − ε, ξ + ε) ⊆ Jα0 . On the other hand, there is N ∈ N such that aN and bN in (ξ − ε, ξ + ε)
because limn an = limn bn = ξ. Thus we have IN = [aN , bN ] ⊆ (ξ − ε, ξ + ε) ⊆ Jα0 . It
contradicts to the Property (c) above. The proof is finished. 2

Theorem 1.9 Let A be a subset of R. The following statements are equivalent.

(i) A is compact.

(ii) A is sequentially compact.

(iii) A is closed and bounded.

Proof: The result is shown by the following path (i)⇒ (ii)⇒ (iii)⇒ (i).
For (i) ⇒ (ii), suppose that A is compact but it is not sequentially compact. Then there
is a sequence (xn) in A such that (xn) has no subsequent which has the limit in A. Put
X = {xn : n = 1, 2, ...}. Then X is infinite. Also, for each element a ∈ A, there is δa > 0
such that Ja := (a − δa, a + δa) ∩ X is finite. Indeed, if there is an element a ∈ A such that
(a − δ, a + δ) ∩ A is infinite for all δ > 0, then (xn) has a convergent subsequence with the
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limit a. On the other hand, we have A ⊆
⋃
a∈A Ja. Then by the compactness of A, we can find

finitely many a1, ..., aN such that A ⊆ Ja1 ∪· · ·∪JaN . So we have X ⊆ Ja1 ∪· · ·∪JaN . Then by
the choice of Ja’s, X must be finite. This leads to a contradiction. Therefore, A is sequentially
compact.
For (ii) ⇒ (iii), assume A is sequentially compact. We first claim that A must be bounded.
Otherwise, if A is unbounded and if we fix x1 ∈ A, then there is an element x2 ∈ A such that
|x1−x2| > 1. By the unboundedness of A again, we can find x3 ∈ A such that |x3−xk| > 1 for
k = 1, 2. To repeat the same step, we can obtain a sequence (xn) in A such that |xm − xn| > 1
for m 6= n. Thus (xn) has no convergent subsequence and hence A is not sequentially compact.
So A must be bounded if A is sequentially compact.
Secondly, we will see that A must be closed. Let (xn) be a sequence in A such that a := limxn
in R. We want to show that a ∈ A by Lemma 1.5. In fact, since A is sequentially compact,
then (xn) has a convergent subsequence (xnk

) with limk xnk
∈ A. This gives a = limn xn =

limk xnk
∈ A. So, A is closed. Part (ii) follows.

It remains to show (iii)⇒ (i). Suppose that A is closed and bounded. Then we can find a closed
and bounded interval [a, b] such that A ⊆ [a, b]. Now let {Jα}α∈Λ be an open intervals cover of
A. Notice that for each element x ∈ [a, b] \A, there is δx > 0 such that (x− δx, x+ δx)∩A = ∅
since A is closed. If we put Ix = (x− δx, x+ δx) for x ∈ [a, b] \A, then we have

[a, b] ⊆
⋃
α∈Λ

Jα ∪
⋃

x∈[a,b]\A

Ix.

Using the Heine-Borel Theorem 1.8, we can find finitely many Jα’s and Ix’s, say Jα1 , ..., JαN

and Ix1 , ..., IxK , such that A ⊆ [a, b] ⊆ Jα1 ∪ · · · ∪ JαN ∪ Ix1 ∪ · · · ∪ IxK . Note that Ix ∩ A = ∅
for each x ∈ [a, b] \ A by the choice of Ix. Therefore, we have A ⊆ Jα1 ∪ · · · ∪ JαN and hence
A is compact.
The proof is finished. 2

2 Complete subsets in R

Definition 2.1 A sequence (xn) in R is called a Cauchy sequence if for every ε > 0, there is
a positive integer N such that |xm − xn| < ε for all m,n ≥ N .

Remark 2.2 A sequence (xn) is not a Cauchy sequence if and only if there is ε > 0 such that
for any positive integer N , we can find some positive integers m,n with m,n ≥ N satisfying
|xm − xn| ≥ ε.

Example 2.3 For each positive integer n, if we put xn =
∑n

k=1 1/k, then (xn) is not a Cauchy
sequence. Indeed, notice that for any positive integer n, we have

|x2n − xn| =
1

n+ 1
+ · · ·+ 1

2n
≥ n

2n
=

1

2
.

So, if we take ε = 1/2, then for any positive integer N , we have |x2N − xN | ≥ ε. Thus (xn) is
not a Cauchy sequence.

Proposition 2.4 Every convergent sequence is a Cauchy sequence.
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Proof: Let (xn) be a convergent sequence and L = limxn. Then for any ε > 0, there is
N ∈ N such that |L − xn| < ε for all n ≥ N . So, for any m,n ≥ N , we have |xm − xn| ≤
|xn − L|+ |L− xm| < ε. Hence (xn) is Cauchy. 2

Definition 2.5 A subset A of R is said to be complete if for any Cauchy sequence (xn) in A
is convergent in A, that is, xn ∈ A for all n and limxn belongs to A.

The following result is one of important theorems in history.

Theorem 2.6 R is complete, that is, every Cauchy sequence in R is convergent. Consequently,
a sequence is convergent in R if and only if it is a Cauchy sequence.

Proof: Let (xn) be a Cauchy sequence in R. We first claim that (xn) must be bounded. Indeed,
by the definition of a Cauchy sequence, if we consider ε = 1, then there is a positive integer N
such that |xm − xN | < 1 for all m ≥ N and thus we have |xm| < 1 + |xN | for all m ≥ N . So,
if we let M = max(|x1|, ..., |xN−1|, |xN | + 1), then we have |xn| ≤ M for all n. Hence (xn) is
bounded.
So, we can now apply the Bolzano-Weierstrass Theorem, (xn) has a convergent subsequence
(xnk

). Let L := limk xnk
. We are going to show that L = limn xn.

Let ε > 0. Since (xn) is Cauchy, there is N ∈ N such that |xm − xn| < ε for all m,n ≥ N .
On the other hand, since limk xnk

= L, we can find a positive integer K so that |L− xnk
| < ε

for all k ≥ K. Now if we choose r ≥ K such that nr ≥ N , then for any n ≥ N , we have
|xn − L| ≤ |xn − xnr |+ |xnr − L| < 2ε. Thus (xn) is convergent with limn xn = L.
The finial assertion follows from Proposition 2.4 at once.
The proof is finished. 2

Corollary 2.7 Let A be a subset of R. Then A is complete if and only if A is closed in R

Proof: Suppose that A is complete. Let (xn) be a convergent sequence in A. Then it must be
a Cauchy sequence by Proposition 2.4. By the definition of completeness, limxn ∈ A and thus
A is closed.
Conversely, assume that A is closed in R. Let (xn) be a Cauchy sequence in A. Theorem 2.6
tells us that limn xn exists. Since A is closed, limn xn ∈ A. The proof is finished. 2

Corollary 2.8 Every compact subset of R is complete.

Proof: It follows from Theorem 1.9 and Corollary 2.7 at once. 2

3 Continuous functions defined on compact sets

Throughout this section, let A be a non-empty subset of R and f : A → R a function defined
on A.

Proposition 3.1 Suppose that f is continuous on A. If A is compact, then there are points c
and b in A such that

f(c) = max{f(x) : x ∈ A} and f(b) = min{f(x) : x ∈ A}.
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Proof: By considering the function −f on A, it needs to show that f(c) = max{f(x) : x ∈ A}
for some c ∈ A.
Method I:
We first claim that f is bounded on A, that is, there is M > 0 such that |f(x)| ≤ M for
all x ∈ A. Suppose not. Then for each n ∈ N, we can find an ∈ A such that |f(an)| > n.
Recall that A is compact if and only if it is closed and bounded (see Theorem 1.9). So, (an)
is a bounded sequence in A. Then by the Bolzano-Weierstrass Theorem, there is a convergent
subsequence (ank

) of (an). Put a = limk ank
. Since A is closed and f is continuous, a ∈ A,

from this, it follows that f(a) = limk f(ank
). It is absurd because nk < |f(ank

)| → |f(a)| for
all k and nk → ∞. So f must be bounded. So L := sup{f(x) : x ∈ A} must exist by the
Axiom of Completeness.
It remains to show that there is a point c ∈ A such that f(c) = L. In fact, by the definition
of supremum, there is a sequence (xn) in A such that limn f(xn) = L. Then by the Bolzano-
Weierstrass Theorem again, there is a convergent subsequence (xnk

) of (xn) with limk xnk
∈ A.

If we put c := limk xnk
∈ A, then f(c) = limk f(xnk

) = L as desired. The proof is finished.
Method II:
We first claim that f is bounded above. Notice that for each x ∈ A, there is δx > 0 such that
f(y) < f(x) + 1 whenever y ∈ A with |x− y| < δx since f is continuous on A. Now if we put
Jx := (x−δx, x+δx) for each x ∈ A, thenA ⊆

⋃
x∈A Jx. So, by the compactness ofA, we can find

finitely many x1, ..., xN in A such that A ⊆ Jx1∪· · ·∪JxN and it follows that for each x ∈ A, we
have f(x) < 1+f(xk) for some k = 1, ..., N . Now if we put M := max{1+f(x1), ..., 1+f(xN )},
then f is bounded above by M on A.
Put L := sup{f(x) : x ∈ A}. It remains to show that there is an element c ∈ A such that
f(c) = L. Suppose not. Notice that since f(x) ≤ L for all x ∈ A, we have f(x) < L for all
x ∈ A under this assumption. Therefore, by the continuity of f , for each x ∈ A, there are
εx > 0 and ηx > 0 such that f(y) < f(x) + εx < L whenever y ∈ A with |y − x| < δx. Put
Ix := (x−ηx, x+ηx). Then A ⊆

⋃
x∈A Ix. By the compactness of A again, A can be covered by

finitely many Ix1 , ..., IxN . If we let L′ := max{f(x1)+εx1 , ..., f(xN )+εxN }, then f(x) < L′ < L
for all x ∈ A. It contradicts to L being the least upper bound for the set {f(x) : x ∈ A}. The
proof is complete. 2

Definition 3.2 We say that a function f is upper semi-continuous (resp. lower semi-continuous)
on A if for each element z ∈ A and for any ε > 0, there is δ > 0 such that f(x) < f(z) + ε
(resp. f(z)− ε < f(x)) whenever x ∈ A with |x− z| < δ.

Remark 3.3 (i) It is clear that a function is continuous if and only if it is upper semi-
continuous and lower semi-continuous. However, an upper semi-continuous function need
not be continuous. For example, define a function f : R→ R by

f(x) =

{
1 if x ∈ [0, 1]

0 otherwise.

(ii) From the Method II above, we see that if f is upper semi-continuous (resp. lower
semi-continuous) on a compact set A, then the function f attains the supremum (resp.
infimum) on A.
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Proposition 3.4 If f : A→ R is continuous and A is compact, then the image f(A) is com-
pact. Furthermore, if f is injective, then the inverse map f−1 : f(A)→ A is also continuous.

Proof: Recall the fact that a subset of R is closed if and only if it is closed and bounded (see
Theorem 1.9). So, it needs to show that f(A) is a closed and bounded set. We first notice
that f(A) is bounded by Proposition 3.1. It remains to show that f(A) is a closed subset of R.
Let y ∈ f(A). Then there is a sequence (xn) in A such that lim f(xn) = y. Then by Theorem
1.9 again, there is a convergent subsequence (xnk

) of (xn) such that limk xnk
∈ A. Since f is

continuous, it follows that y = limk f(xnk
) = f(limk xnk

) ∈ f(A) and thus f(A) is closed.
Concerning the last assertion, let B = f(A) and g = f−1 : B → A. Suppose that g is not
continuous at some b ∈ B. Put a = g(b) ∈ A. Then there are η > 0 and a sequence (yn)
in B such that lim yn = b but |g(yn) − g(b)| ≥ η for all n. Let xn := g(yn) ∈ A. So, by the
compactness of A, there is a convergent subsequence (xnk

) of (xn) such that limk xnk
∈ A. Let

a′ = limk xnk
. Then we have f(a′) = limk f(xnk

) = limk ynk
= b. On the other hand, since

|g(yn)− g(b)| ≥ η for all n, we see that

|xnk
− a| = |g(ynk

)− g(b)| ≥ η > 0

for all k and hence |a′ − a| > 0. This implies that a 6= a′ but f(a′) = b = f(a). It contradicts
to f being injective.
The proof is finished. 2

Remark 3.5 The assumption of the compactness in the last assertion of Proposition 3.4 is
essential. For example, consider A = [0, 1) ∪ [2, 3] and define f : A→ R by

f(x) =

{
x if x ∈ [0, 1)

x− 1 if x ∈ [2, 3].

Then f(A) = [0, 2] and f is a continuous bijection from A onto [0, 2] but f−1 : [0, 2] → A is
not continuous at y = 1.

Example 3.6 By Proposition 3.4, it is impossible to find a continuous surjection from [0, 1]
onto (0, 1) since [0, 1] is compact but (0, 1) is not. Thus [0, 1] is not homeomorphic to (0, 1).

Definition 3.7 A function f : A→ R is said to be uniformly continuous on A if for any ε > 0,
there is δ > 0 such that |f(x)− f(y)| < ε whenever x, y ∈ A with |x− y| < δ.

Remark 3.8 It is clear that if f is uniformly continuous on A, then it must be continuous on
A. However, the converse does not hold. For example, consider the function f : (0, 1] → R
defined by f(x) := 1/x. Then f is continuous on (0, 1] but it is not uniformly continuous on
(0, 1]. Notice that f is not uniformly continuous on A means that

there is ε > 0 such that for any δ > 0, there are x, y ∈ A with |x− y| < δ but |f(x)− f(y)| ≥ ε.

Notice that 1/x→∞ as x→ 0+. So if we let ε = 1, then for any δ > 0, we choose n ∈ N
such that 1/n < δ and thus we have |1/2n − 1/n| = 1/2n < δ but |f(1/n) − f(1/2n)| = n >
1 = ε. Therefore, f is not uniformly continuous on (0, 1].
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Example 3.9 Let 0 < a < 1. Define f(x) = 1/x for x ∈ [a, 1]. Then f is uniformly continuous
on [a, 1]. In fact for x, y ∈ [a, 1], we have

|f(x)− f(y)| = |1
x
− 1

y
| = |x− y|

xy
≤ |x− y|

a2
.

So for any ε > 0, we can take 0 < δ < a2ε. Thus if x, y ∈ [a, 1] with |x− y| < δ, then we have
|f(x)− f(y)| < ε and hence f is uniformly continuous on [a, 1].

Proposition 3.10 If f is continuous on a compact set A, then f is uniformly continuous on
A.

Proof: Compactness argument:
Let ε > 0. Since f is continuous on A, then for each x ∈ A, there is δx > 0, such that
|f(y)−f(x)| < ε whenever y ∈ A with |y−x| < δx. Now for each x ∈ A, set Jx = (x− δx

2 , x+ δx
2 ).

Then A ⊆
⋃
x∈A Jx. By the compactness of A, there are finitely many x1, ..., xN ∈ A such

that A ⊆ Jx1 ∪ · · · ∪ JxN . Now take 0 < δ < min(
δx1
2 , ...,

δxN
2 ). Now for x, y ∈ A with

|x − y| < δ, then x ∈ Ixk for some k = 1, .., N , from this it follows that |x − xk| <
δxk
2 and

|y−xk| ≤ |y−x|+|x−xk| ≤
δxk
2 +

δxk
2 = δxk . So for the choice of δxk , we have |f(y)−f(xk)| < ε

and |f(x) − f(xk)| < ε. Thus we have shown that |f(x) − f(y)| < 2ε whenever x, y ∈ A with
|x− y| < δ. The proof is finished.
Sequentially compactness argument:
Suppose that f is not uniformly continuous on A. Then there is ε > 0 such that for each
n = 1, 2, .., we can find xn and yn in A with |xn − yn| < 1/n but |f(xn) − f(yn)| ≥ ε. Notice
that by the sequentially compactness of A, (xn) has a convergent subsequence (xnk

) with
a := limk xnk

∈ A. Now applying sequentially compactness of A for the sequence (ynk
), then

(ynk
) contains a convergent subsequence (ynkj

) such that b := limj ynkj
∈ A. On the other

hand, we also have limj xnkj
= a. Since |xnkj

− ynkj
| < 1/nkj for all j, we see that a = b. This

implies that limj f(xnkj
) = f(a) = f(b) = limj f(ynkj

). This leads to a contradiction since we

always have |f(xnkj
)− f(ynkj

)| ≥ ε > 0 for all j by the choice of xn and yn above. The proof

is finished. 2

Proposition 3.11 Let f be a continuous function defined on a bounded subset A of R. Then
the following statements are equivalent.

(i): f is uniformly continuous on A.

(ii): There is a unique continuous function F defined on the closure A such that F (x) = f(x)
for all x ∈ A.

Proof: The Part (ii)⇒ (i) follows from Theorem 1.9 and Proposition 3.10 at once.
The proof of Part (i)⇒ (ii) is divided by the following assertions. Assume that f is uniformly
continuous on A.
Claim 1. If (xn) is a sequence in A and limxn exists, then lim f(xn) exists.
It needs to show that (f(xn)) is a Cauchy sequence. Indeed, let ε > 0. Then by the uniform
continuity of f onA, there is δ > 0 such that |f(x)−f(y)| < ε whenever x, y ∈ A with |x−y| < δ.
Notice that (xn) is a Cauchy sequence since it is convergent. Thus, there is a positive integer
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N such that |xm − xn| < δ for all m,n ≥ N . This implies that |f(xm) − f(xn)| < ε for all
m,n ≥ N and hence, Claim 1 follows.
Claim 2. If (xn) and (yn) both are convergent sequences in A and limxn = lim yn, then
lim f(xn) = lim f(yn).
By Claim 1, L := lim f(xn) and L′ = lim f(yn) both exist. For any ε > 0, let δ > 0 be found
as in Claim 1. Since limxn = lim yn, there is N ∈ N such that |xn − yn| < δ for all n ≥ N
and hence, we have |f(xn)− f(yn)| < ε for all n ≥ N . Taking n→∞, we see that |L−L′| ≤ ε
for all ε > 0. So L = L′. Claim 2 follows.
Recall that an element x ∈ A if and only if there is a sequence (xn) in A converging to x.
Now for each x ∈ A, we define

F (x) := lim f(xn)

if (xn) is a sequence in A with limxn = x. It follows from Claim 1 and Claim 2 that F is a
well defined function defined on A and F (x) = f(x) for all x ∈ A.
So, it remains to show that F is continuous. Then F is a continuous extension of f to A as
deired.
Now suppose that F is not continuous at some point z ∈ A. Then there is ε > 0 such that for
any δ > 0, there is x ∈ A satisfying |x − z| < δ but |F (x) − F (z)| ≥ ε. Notice that for any
δ > 0 and if |x − z| < δ for some x ∈ A, then we can choose a sequence (xi) in A such that
limxi = x. Therefore, we have |xi − z| < δ and |f(xi) − F (z)| ≥ ε/2 for any i large enough.
Therefore, for any δ > 0, we can find an element x ∈ A with |x−z| < δ but |f(x)−F (z)| ≥ ε/2.
Now consider δ = 1/n for n = 1, 2.... This yields a sequence (xn) in A which converges to z
but |f(xn)− F (z)| ≥ ε/2 for all n. However, we have lim f(xn) = F (z) by the definition of F
which leads to a contradiction. Thus F is continuous on A.
Finally the uniqueness of such continuous extension is clear.
The proof is finished. 2

Example 3.12 By using Proposition 3.11, the function f(x) := sin 1
x defined on (0, 1] cannot

be continuously extended to the set [0, 1].

4 Lipschitz functions

Definition 4.1 Let A be a non-empty subset of R. A function f : A→ R is called a Lipschitz
if there is a constant C > 0 such that |f(x)− f(y)| ≤ C|x− y| for all x, y ∈ A. In this case.
Furthermore, if we can find such 0 < C < 1, then we call f a contraction.

It is clear that we have the following property.

Proposition 4.2 Every Lipschitz function is uniformly continuous on its domain.

Example 4.3 (i) : The sine function f(x) = sinx is a Lipschitz function on R since we
always have | sinx− sin y| ≤ |x− y| for all x, y ∈ R.

(ii) : Define a function f on [0, 1] by f(x) = x sin(1/x) for x ∈ (0, 1] and f(0) = 0. Then f is
continuous on [0, 1] and thus f is uniformly continuous on [0, 1]. But notice that f is not
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a Lipschitz function. In fact, for any C > 0, if we consider xn = 1
2nπ+(π/2) and yn = 1

2nπ ,

then |f(xn)− f(yn)| > C|xn − yn| if and only if

2

π
·

(2nπ + π
2 )(2nπ)

2nπ + π
2

= 4n > C.

Therefore, for any C > 0, there are x, y ∈ [0, 1] such that |f(x) − f(y)| > C|x − y| and
hence f is not a Lipschitz function on [0, 1].

Proposition 4.4 Let A be a non-empty closed subset of R. If f : A → A is a contraction,
then there is a fixed point of f , that is, there is a point a ∈ A such that f(a) = a.

Proof: Since f is a contraction on A, there is 0 < C < 1 such that |f(x) − f(y)| ≤ C|x − y|
for all x, y ∈ A. Fix x1 ∈ A. Since f(A) ⊆ A, we can inductively define a sequence (xn) in A
by xn+1 = f(xn) for n = 1, 2... Notice that we have

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ C|xn − xn−1|

for all n = 2, 3... This gives
|xn+1 − xn| ≤ Cn−1|x2 − x1|

for n = 2, 3, .... So, for any n, p = 1, 2.., we see that

|xn+p − xn| ≤
n+p−1∑
i=n

|xi+1 − xi| ≤ |x2 − x1|
n+p−1∑
i=n

Ci−1.

Since 0 < C < 1, for any ε > 0, there is N such that
∑n+p−1

i=n Ci−1 < ε for all n ≥ N
and p = 1, 2, ... Therefore, (xn) is a Cauchy sequence and thus the limit a := limn xn exists.
Since A is closed, we have a ∈ A and hence f is continuous at a. On the other hand, since
xn+1 = f(xn). Therefore, we have a = f(a) by taking n→∞. The proof is finished. 2

Remark 4.5 The Proposition 4.4 does not hold if f is not a contraction. For example, if we
consider f(x) = x− 1 for x ∈ R, then it is clear that |f(x)− f(y)| = |x− y| and f has no fixed
point in R.

5 Continuous functions defined on intervals

Recall that a non-empty subset I of R is called an interval if it has one of the following forms.

(i) R.

(ii) (−∞, a] or [a,∞) or (−∞, a) or (a,∞) for some a ∈ R.

(iii) (a, b) or (a, b] or [a, b) or [a, b] for some a, b ∈ R with a < b.

Lemma 5.1 Let I be a non-empty subset of R. Suppose that there are different elements in I.
Then I is an interval if and only if for any a, b ∈ I with a < b, we have [a, b] ⊆ I.
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Proposition 5.2 (Intermediate Value Theorem): Let I be an interval and let f : I → R
be a continuous function. Suppose that there are a and b in I with f(a) < z < f(b). Then
there is c between a and b such that f(c) = z.

Proof: Notice that if we consider the function x ∈ I 7→ f(x) − z, then we may assume that
z = 0. Also, we may assume that a < b. Put x1 = a and y1 = b. Now if f(a+b

2 ) = 0, then the

result is obtained. If f(a+b
2 ) > 0, then we set x2 = a and y2 = a+b

2 . Similarly, if f(a+b
2 ) < 0,

then we set x2 = a+b
2 and y2 = b. To repeat the same procedure, if there are xN and yN such

that f(xN+yN
2 ) = 0, then the result is shown. Otherwise, we can find a decreasing sequence of

closed and bounded intervals [a, b] = [x1, y1] ⊇ [x2, y2] ⊇ · · · with lim(yn−xn) = 0 and f(xn) <
0 < f(yn) for all n. Then by the Nested Intervals Theorem, we have

⋂
n[xn, yn] = {c} for some

c ∈ [x1, y1] = [a, b] ⊆ I because I is an interval. Moreover, we have limn xn = limn yn = c.
Then by the continuity of f , we see that f(c) = lim f(xn) = lim f(yn). Since f(xn) < 0 < f(yn)
for all n, we have f(c) = 0. The proof is finished. 2

Remark 5.3 The assumption of the intervals in the Intermediate Value Theorem is essential.
For example, consider I = [0, 1) ∪ (2, 3] and define f : I → R by

f(x) =

{
x if x ∈ [0, 1)

x− 1 if x ∈ (2, 3].

Then f(0) < 1 < f(3) but 1 /∈ f(I).

Corollary 5.4 Let f ; [a, b]→ R. Suppose that M := sup{f(x) : x ∈ [a, b]} and m = inf{f(x) :
x ∈ [a, b]}. Then f([a, b]) = [m,M ].

Proof: Notice that if m = M , then f is a constant function and hence, the result is clearly
true.
Now suppose that m < M . It is clear that f([a, b]) ⊆ [m,M ] because m ≤ f(x) ≤ M for all
x ∈ [a, b]. For the converse inclusion, notice that since [a, b] is compact, there are x1 and x2

in [a, b] such that f(x1) = m and f(x2) = M . We may assume that x1 < x2. To apply the
Intermediate Value Theorem for the restriction of f on [x1, x2], we have [m,M ] ⊆ f([x1, x2]) ⊆
f([a, b]). The proof is finished. 2

Corollary 5.5 Let I be an interval and let f : I → R be a continuous non-constant function.
Then f(I) is an interval.

Proof: Notice that by Lemma 5.1, it needs to show that for any c, d ∈ f(I) with c < d implies
that [c, d] ⊆ f(I). Suppose that a, b ∈ I with a < b satisfy f(a) = c and f(b) = d. Notice that
[a, b] ⊆ I because I is an interval. If we put M = supx∈[a,b] f(x) and m = infx∈[a,b] f(x), then
by Corollary 5.4, we have

[c, d] ⊆ [m,M ] = f([a, b]) ⊆ f(I).

The proof is finished. 2

Example 5.6 It is impossible to find a continuous surjection from (a, b) onto (c, d) ∪ (e, f)
where d ≤ e.
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